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Using a nonlinear critical layer analysis, Goldstein & Leib (1988) derived a set of 
nonlinear evolution equations governing the spatial growth of a two-dimensional 
instability wave on a homogeneous incompressible tanh y mixing layer. In this study, 
we extend this analysis to the temporal growth of the Garcia model of an incompressible 
stratified shear layer. We consider the stage of the evolution in which the growth first 
becomes nonlinear, with the nonlinearity appearing inside the critical layer. The 
Reynolds number is assumed to be just large enough so that the unsteady, nonlinear 
and viscous terms all enter at the same order of magnitude inside the critical layer. The 
equations are solved numerically for the inviscid case. 

1. Introduction 
If a small nearly neutral two-dimensional disturbance is superimposed on a mixing 

layer, it is well known that the evolution of the disturbance is linear when the amplitude 
of the disturbance is sufficiently small. However, if the disturbance is unstable and 
growing, eventually its amplitude will become large enough that nonlinear effects 
become important. These nonlinear effects first enter inside the critical layer where the 
phase velocity of the disturbance equals the mean velocity of the base flow. 

Goldstein & Leib (1988) considered the case of a homogeneous incompressible 
mixing layer. They found that, if the magnitude of the disturbance is assumed to be 
O(e), then the evolution remains linear provided 4 ,LA, where ,LA denotes the order of 
magnitude of the departure of the wavenumber a of the disturbance from its neutral 
value a, and consequently the timescale (or lengthscale) upon which the disturbance 
develops. During this linear stage, the amplitude A grows like a,drt ,  where cr is the 
(constant) growth rate. Goldstein & Leib found that the evolution first became 
nonlinear when ,LA - O(E' /~ ) ,  and in that regime the amplitude was governed by a set of 
nonlinear evolution equations (their equations (3.15H3.20)). This flow regime had 
earlier been studied, in the context of forced Rossby waves, by Warn & Warn (1978) 
and Stewartson (1978). The analysis of Goldstein & Leib was later extended (Goldstein 
& Hultgren 1988) to the viscous case for large Reynolds numbers, Re-' = e3l2h; these 
scalings were chosen so that nonlinearity, time dependence and viscosity all enter into 
the vorticity equation inside the critical layer at the same order. It was found that the 
critical layer aged into a quasi-equilibrium one, and in the viscous case the initial 
exponential growth of the instability wave was converted into a weak algebraic growth 
during the roll-up process. This led to a subsequent stage of evolution, studied in more 
detail by Hultgren (1992). This next stage involved an equilibrium-type critical layer, 
analogous to that studied by Benney & Bergeron (1969), but with variable vorticity 
inside the vortex cores unlike the vorticity-homogenized solution of Benney & 
Bergeron; by contrast, in the studies of Warn & Warn and Stewartson because of the 
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forcing the vorticity inside the cores did homogenize. Hultgren also compared the 
theory with experimental results, and found what he considered to be very good 
agreement. Goldstein and coworkers subsequently extended the analysis to a number 
of other problems, for example hypersonic boundary layers (Goldstein & Wundrow 
1990). For a discussion of previous studies of the homogeneous problem, the reader is 
referred to Goldstein & Leib (1988), and for a review of nonlinear critical layers in 
general to Maslowe (1986). 

In  this study, we also include the effect of stratification by considering the Garcia 
model of a stratified shear layer (e.g. Drazin & Howard 1966). for which the base 
stream function $(")( y )  and temperature 0'")( y )  are given by 

I , V O ) ( ~ )  = 1ogcosh.v - y2/2-y4/12+ ..., 
P ( y )  = tanh3y - J J ~ - ~ ~ +  ..., 

(1.1) 

where the expansions are valid as y + 0. We shall see in $ 3  that this leads to a set of 
equations similar to that in Goldstein & Leib (1988). The Garcia model has previously 
been studied by Engevik (1 982) who considered the Stuart-Watson-type nonlinear 
stability and by Mallier (1994) who modelled the equilibrium states that have been 
observed in numerical simulations. In our study, we shall retain viscous terms during 
the derivation of the evolution equations. However, we shall solve these evolution 
equations for the inviscid case only, since that will enable us to use a characteristic 
scheme due to Goldstein & Wundrow (1990). 

1 

2. Outer expansion 
We consider two dimensional waves of magnitude O(E) of the form e*jZr 

superimposed on the Garcia model of a stratified shear layer, where a = c ~ , , - e ~ / ~ a ~  is 
close to the neutral wavenumber a,,. We shall introduce a slow timescale T = and 
assume the Reynolds number is large, Re-' = e3/'h, where h is the so-called 
Benney-Bergeron parameter, so that using the Boussinesq approximation the 
governing equations become 

(2.1) 1 t1/2V2$T - J($, V 2 $ )  + J ,  0, = E ~ ~ ~ ~ V ~ $ ,  
e1/20T - J($ ,  0 )  = e3/'h Pr-'V20, 

where J(a, b) = a, b, - a,  b, is a Jacobian, J ,  is an overall Richardson number and Pr 
is the Prandtl number. The outer expansion in the limit as y - 0  will be of the form 

(2.2) 
where 

(2.3) 

- $ ( O ) ( J J )  + t $ ( ' ) ( . X . J ,  1 )  + €3/2$(3/2)(X,l', t )  + e2$"2)(-u,y, 1 )  + . . ., 

I $(I)  = $.f)( y ,  T )  + ( $!I)( y ,  T )  el"" + c.c.), 
x 

$1(3/2) = $b3/'")( 8, T )  + C ($E /2 ) (y .  T )  eitna.+ +c.c.), 
m=1 

with a similar expression for 0, where H"), 8(3/2), etc. are given by similar expressions. 
In general we shall use the notation $!; to mean the term at O(E') accompanying eiamr, 
and we shall introduce the operator 

Ymq5 = (~~,+(or,(cr ,+ 1)sech2p-rn2ai))4. (2.4) 
Substituting this expansion into the governing equations yields an hierarchy of 
equations. As noted in Q 1, these scalings are chosen so that nonlinearity, time 
dependence and viscosity all enter into the vorticity equation (3.1) at the same order 
inside the critical layer. 
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At O(e), from linear stability theory (Drazin & Howard 1966), we know that Jo = 
(a,- I)(ao+2)/3 and 

We also find that the leading-order change in the mean flow due to diffusive effects is 
given by 

$?) = A(T)sech"oy, 0:') = 3A(T)sech3+"oysinhy. (2.5) 

$r) = ATsech'y, 0:) = ~ s e c h 5 y ( 7 s i n h y - s i n h  2Pr 3y). (2.6) 

At O(e3/'), we find that t,h(03/') = 6(03/') = 0 and 

2 i ( a ~ + a o -  1)A' 
a. sinh y coshl+JL~ly' 

Y1 $?/2) = - 2a, a, A sech"0y - ( 2 . 7 ~ )  

$(3/2) 1 - C y )  - a, A +y(D',3/')(*) + 2iA'(a,+ 1 -a;') (1 -log Iyl)) + .. ,, (2.76) 
013'') - 3iA'a,'+y(3C13/''-3a1A)+ ..., ( 2 . 7 ~ )  

where this expansion is valid as y+O, and C?/')(T) and Dy/'"*)(T) are (as yet) 
undetermined functions of the slow timescale T and the superscripts ' + ' and ' - ' refer 
to the solutions above and below the critical layer respectively. 

Multiplying the equation for Y, $?/') by t,hy) and integrating between - co and 00, 

taking the Cauchy principal value, and enforcing the homogeneous boundary 
condition on $',3/'), we obtain a solvability condition, 

where B(x ,  y )  = Ji tX-l(l - I ) ~ - '  dr is the beta function. The jump in $!",'I across the 
critical layer is given by 

(2.9) 
In the early stages of the disturbance (the so-called linear-growth critical layer), we 
know that the jump across the critical layer is simply 

since during this stage the logarithmic phase shift is -in; thus, in the early stages of 
the disturbance, the amplitude A(T)  obeys A' = a A ,  where a is the growth rate, 

1 1 a, %, a,) A, (2.8) 0 ( 3 / 2 ) ( + )  - 0 ( 3 / 2 ) ( - )  = 2a 

(3/2) O+ - 0(3/2)(+) - 0(3/2)(-) = 2a a B(i, A .  [$1y lo- - 1 1 1 0  

0',3/"(+) - 0(3/2)(-) 1 = 2nA'(a0 + 1 - (2.10) 

(2.1 1) 

This gives us an initial condition, A +a0emT as T--co. 
For the higher harmonics, we find that for rn 3 2, 

$y - C y (  T )  + O(y). 0 y  - 3 C y (  T)g + O(y2). (2.12) 

3. Inner expansion 
As in Goldstein & Leib (1988), near the critical layer at y = 0, we shall introduce the 

rescaled variables Y = ~ ' / ~ y ,  E = ax, Y = et,h and 0 = ~ - ~ ' ' 8 ,  which leads to the 
governing equations in the critical layer, 

Yy,.T+~a2Y,5T-dcL(Y, ! P , , . + E O ~ ~ Y ~ ~ ) + E J ~ C C @ ~  

- A( Yy + 2ea2 YcC1.)-. + €'a4 YEttt) = 0, (3.1 a) 

(3.1 b) @T-aJcL(Y, @)-i \Pr-1(@,, .+ea2@,f)  = 0, 
where J ~ L ( u ,  b) = uc b, - u, b,. 

The form of the outer solution written in inner variables suggests that 
Y - y l c o ~ + € ~ ~ ~ y c ~ ~ ' ~ + ( € l o g € " ~ )  !Pll)+€P1)+ ... ( (3.2) 
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with a similar expression for 0. Substituting this expansion into the governing 
equations yields an hierarchy of equations. 

At O(eo), from the outer solution, we know that 

!Po) = Y2/2+hT+A(T)eif+A*(T) e-'f (3.3) 

(3.4) 

and the behaviour of as Y+ f 00 leads us to write 

Q(O) = Y3 + 6A Pr-l TY + (3eif(A Y + iA'a;') + c.c.) + I!+(,) ,  

which leads to the following equation for I Y O ) :  
&+a, mf-aoi(A e'f-A*e-'f)a,-h Pr-'a2,,)6'') 

together with the boundary condition that 

= 6h Pr-1 Ta,i(A eif-A*e-'f)-3ia61(A''e'f-A*'' e-'E) + 301, i(A2 e2if-A*2 e-2i') 
(3.5) 

+ 0 as Y + k 00. 

At O ( S ' / ~ ) ,  we find that the solution which matches to the outer expansion is 
m 

!P1/z) = (C',3l2) + a1 A )  eiaz + c.c. + (C2I2) eimaz +c.c.). (3.6) 
m-2 

At O(s'), the behaviour of @& as Y + f 00 leads us to write 

which leads to the following equation for Q(l): 

!P& = - Y - 2h T-  a,(A eif + A * e-'f) + Q(l) ,  (3.7) 

(aT+a, Yaf-aoi(Ae'f-A*e-'f)a,-ha2yy)Q(l) 

= 2(ai+ a,- 1) (A' erf + A*' e-'f)-$a,(a,- 1) (2+ a,) I!+?) (3.8) 
together with the boundary condition that Q(l)  + 0 as Y + k 00. We also have a jump 
condition across the critical layer : 

XJ-: e-'f Q(l)  d Y d t  = [$r)]!' = 2a1 a, B(i, a,) A .  (3.9) 

Thus we have the coupled nonlinear evolution equations ( 3 . 3 ,  (3.8) together with the 
jump condition (3.9) and the boundary conditions that + 0 and Q(" +O as Y+ f 00 

and the initial condition that A +a,eqT as T-+- 00. This initial condition for A ( T )  
together with (3.5), (3.8) tells us that as T+ - 00, 

Q(l) +a,e'f+"T(E(z) T+F(z)) +c.c., 6(o)+a,e'5+"T(G(,i?) T+ H(~))+c.c., (3.10) 

where z = (ia0h-1)1/3 ( Y-(iv/a,)) and 2 = Pr1l3z, and E, F, G and H satisfy the 
inhomogeneous Airy's equations 

) H(Pr1/3z) 

(3.1 1 a) 

( l -a , -at) ,  (3.11b) 

( 3 . 1 1 ~ )  

(3.11d) 
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subject to the integral constraints (arising from the jump conditions across the critical 
layer) that 

H(qd2 = 0, (3.12a) 
a3 rm E(z) dz = J:w G(2) dz' = I, 

a3 113 

F(z)dz = 2 a 1 a 0 ( ~ )  B(;,a,). (3.1 2 b) 

When a, = 1 (so that J, = 0, corresponding to the unstratified case), the equation for 
is decoupled and we are left with the system of equations for a passive scalar in a 

homogeneous tanh y mixing layer, namely 

(3.13) 
and 

(a, + Ya,- i(A eis- A* e-it) ay - A  Pr-' a",) 

together with the jump condition 

I, 

(a, + Ya, - i(A ei5- A* e-it) ay -Ad",,.) Q(') = 2(A'eiS + A*'e-I,), 

= 6 A  Pr-'fi(A e't- A* e-iS) - 3i(A"e'5 - A*"e-'5) + 3i(A2 ezif- A*2 e-21,) (3.14) 

(3.15) 

4. Numerical computation 
The coupled nonlinear evolution equations (3.3, (3.8), (3.9) must be solved 

numerically. For the inviscid case ( A  = 0), this is comparatively straightforward to 
accomplish using a characteristic scheme similar to that described in Goldstein & 
Wundrow (1990) for a similar problem. For the inviscid case, we can see that 
A + ageuT as T-2 - co (where a, is a constant which we can choose to be 1 by shifting 
T ) ,  and 

2i(4 + a, - 1) A'( T )  eis 
a,( Y - ia/a,) 

p -2 - +c.c., 

+ C.C., 
3A"( T )  ei5 

a:( Y - ia/a,) 
g(0) + - 

(4.1 a) 

(4.1 b) 

where @l) = Q(l) -;(a, - 1) (a, + 2) #?). One then introduces Lagrangian (charac- 
teristic) coordinates (,, &, and r = T via 

- 2a, A sin 6, dY 
dr dr  
-- d S - a , Y  and -- 

where the determinant a((, Y)/a((,, &) = 1 and 5, = 
With this change of variables, we can write ( 3 3 ,  (3.8) in the form 

and &, = Y as ro +. - co. 

d&(l) 
-6a,A2sin2(, - = 4(a:+a,- l)A'cos(, (4.3) 

d#(O) - 6A" sin ( -- 
d r  a, d r  

where we have used the fact that H ,  = a(( ,H) /a( ( , ,  &). These equations have a 
solution 

= - Y3+6A's in( /a , -6AYcos(+F(( , ,  q), (4.4a) 

(4.4b) @) = 4(a:+a,- l ) A c o ~ ( + ( a t + a , -  1) Y'+GG((,, &,), 
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where F and G depend only on 6, and r, (and not on 7). The solutions to (4.2) and (4.3) 
have the following symmetry; 

and consequently calculations need only be done for 0 < r, < 00. Since 

Jp JTa 8") cos 5 d Y d t  = 0, 

we can write the jump condition (3.9) as 

We know that dO(O)/d7 = 0, which enables us to generate asymptotic expansions for Y 
and subsequently 6 and @I),  

2 ( ~ ( 7 , )  cos 6" - 4 7 )  cos 0 ~ ( A ' ( T )  sin to - A'(7J sin 0 
r, y: 

Y -  y,+ + 
6 - tO+a,,(7--,) K + o U / Y t ) ,  (4.7b) 

4 ( 4  + a, - 1) A'(7) sin 6 4 ( 4  +a, - 1) A"(7) cos 5 
a0 r, @ l )  + a: Y i  +o(-&), (4 .74  

and consequently we can approximate (4.6) by 

. (4.8) 
4(at + a, - 1) " (7 )  

a; M 
L / r  J: Q(l)cos 6d Y, dt, = 201, a, B(& a,) A - 
7t 

The equations (4.2), (4.3) and (4.8) were solved numerically using a fourth-order 
Runge-Kutta scheme to march forward in time and Simpson's rule to evaluate the 
integrals in (4.8); the integration was started in the linear regime, using (4.1) to provide 
initial conditions for @l) and a("). 

5. Numerical results 
In figure 1 ,  we plot the evolution of the amplitude A for several values of the 

Richardson number J,. We see that for all the cases studied, the growth is initially 
linear, and that when nonlinear terms become important, the solution oscillates about 
a quasi-equilibrium state. This quasi-equilibrium state is consistent with results from 
numerical simulations of two-dimensional stratified shear layers, and the oscillation 
about this state is believed to be related to the phenomenon of vortex nutation 
observation in numerical simulations. While the Stuart-Watson type theory studied by 
Engevik (1982) had allowed for an equilibrium state, oscillations about this state were 
not possible. The effect of stratification upon the evolution of the amplitude appears 
to be two-fold, with the growth rate during the linear phase and the amplitude of the 
quasi-equilibrium state both decreasing as J,, is increased. 
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FIGURE 1. Evolution of the amplitude A .  
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FIGURE 2. vorticity contours for J ,  = 0: 
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1 )  I = -2 .5 ,  (b) I = 0, (c) t = 2.5, ( d )  I = 5 .  

In figures 2 and 3, we plot the evolution of the vorticity contours for both the 
unstratified case and a case with fairly strong stratification (J ,  = I ) ,  and we see that 
initially small disturbances grow and wrap up, with sharp gradients developing at the 
edges of the cat’s eyes in the later stages. In figures 4 and 5,  we plot the vorticity on 
a vertical section through the core (on the plane 5 = x) for the plots shown in figures 
2 and 3 respectively. For all the cases shown, and others at different values of J ,  not 
presented here, we get strong spikes of vorticity developing at the edges of the cat’s eyes 
in the later stages; these correspond to the sharp gradients which appear in the contour 
plots and which have also been observed in numerical simulations. These spikes would 
to some extent be smoothed out if viscosity were present. One noticeable effect of 
stratification is the appearance of a relative trough of vorticity inside the core which 
other plots not presented here suggest becomes deeper as the Richardson number is 
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FIGURE 3. As in figure 2 but J ,  = 1 
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FIGURE 4. Vorticity on line 6 = IC for J ,  = 0: ( n )  t = -2 .5 ,  (b )  t = 0, ( c )  I = 2.5,  ( d )  f = 5 
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FIGURE 5 .  As in figure 4 but J,  = 1 
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FIGURE 6. Temperature contours for J,, = 0 :  (a) 

9 1 2 3 4 5 6  

= -2 .5 ,  (b)  t = 0,  (c) t = 2.5, ( d )  t = 5 .  
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FIGURE 7. As in figure 6 but J, = 1 

increased. Another effect is that the vortex becomes flatter. that is the asDect rat 1 

becomes more extreme, with increasing J,. Finally in figures 6 and 7, we plot the 
temperature contours at different times for several different Richardson numbers. 
Examination of the structure of the temperature on a vertical section through the core 
indicates that, unlike the vorticity, the temperature inside the core homogenizes fairly 
rapidly. 

6. Concluding remarks 
By considering the flow inside the critical layer, wc have derived a system of 

equations ( 3 . 3 ,  (3.8), (3.9) governing the temporal evolution of an initially linear 
disturbance in a stratified incompressible shear layer; this set of equations, together 
with the numerical solutions for the inviscid case, is the final result of this paper. 
Comparison with the unstratified case (3. I3)-(3.15) suggests that whereas the equation 
for is relatively unchanged from the equation for a passive scalar, the equation for 
Q‘” has an additional term on the right-hand side which represents the coupling of the 
temperature to the vorticity equation. 

Numerical solutions of these equations for the inviscid case show that both the 
temperature and vorticity develop sharp gradients at the edge of the core, together with 
the somewhat surprising finding that a relative trough of vorticity develops inside the 
core for non-zero Richardson numbers, with this trough presumably being due to the 
coupling term in the equation for Q‘” mentioned above. By contrast, for the zero- 
Richardson-number case the vorticity on a section through the core (figure 4) appears 
to have a slight peak inside the core. The relative trough for non-zero .I,, is slightly 
surprising because earlier studies of equilibrium states in stratified fluids had predicted 
either a constant vorticity distribution inside the core (e.g. Maslowe 1972), with this 



Evolution of a stratijied nii.ving layer 297 

prediction based on the Prandtl-Batchelor theorem, or alternatively a smooth 
distribution of vorticity inside the core resembling that of the Stuart vortex (e.g. Mallier 
1994), with this prediction based on an argument due to Rhines & Young (1983) that 
homogenization of vorticity inside closed streamlines takes place on two distinct 
timescales. 

For the homogeneous mixing layer, Goldstein & Hultgren (1988) found that one 
effect of viscosity was that the vorticity distribution was diffused into a more regular 
pattern than had been the case in the absence of vorticity, and it is reasonable to 
suppose that a similar situation would hold here if diffusive effects were retained in the 
numerical computations. It is unclear how the addition of viscosity to the problem 
would affect the relative trough of vorticity discussed above, and this is an issue that 
would best be tackled by direct numerical simulation: indeed, it seems a little surprising 
that none of the numerous simulations of stratified flow to date appear to have 
examined in detail the structure of the vorticity inside the core, other than simply 
presenting contour plots which do not resolve the issue raised here, preferring instead 
to focus on other issues. 

Finally, we touch on the issue of using a different model of a stratified shear layer, 
for example the Hslmboe model for which the base temperature is given by OcO) = 
tanh y. Although it is unclear exactly how the present results would bechanged. numerical 
simulations of the full Navier-Stokes equations (L. P. Wang & M. R. Maxey, 1991, 
private communication) suggest that, although the gradients that appear at the edge of 
the core are even more severe for the Hslmboe model than for the Garcia model, the 
gross features of the flow do not change that much, at least for Richardson numbers 
of about 0.1. One thing that is clear, however, is that the analysis for the Herlmboe 
model would be considerably more difficult since the singularity at the critical layer is 
far worse for that model. 
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